
Lebesgue’s Criterion for Riemann integrability

Here we give Henri Lebesgue’s characterization of those functions which are
Riemann integrable.

Recall the example of the he Dirichlet function, defined on [0,1] by

f(x) =
{ 1

q , if x = p
q is rational in lowest terms

0, otherwise
.

This function is continuous at all irrational numbers and discontinuous at the ratio-
nal numbers. It is also Riemann-integrable (with integral 0). It turns out that there
is a connection here. It is the nature of the set of discontinuities that determines
integrability.

For a real-valued function f defined on a set X, and I ⊂ X, let ωf(I) =
sups,t∈I |f(s) − f(t)|, the oscillation of f on I, as usual. The oscillation of f
at a point x is defined as

ωf (x) = inf{ωf(B(x, δ)) : δ > 0}.

It is easy to prove that f is continuous at x if and only if ωf (x) = 0.

Lemma. Let f : [a, b] → R. Then, for every α > 0, {x : ωf (x) < α} is open in
[a, b] and {x : ωf (x) ≥ α} is a closed set (in R).

Proof. Let G = {x ∈ [a, b] : ωf (x) < α}. Let c ∈ G. Then, ωf (c) < α and by
definition, there is a δ > 0 such that ωf(B(c, δ) ∩ [a, b]) < α. If x ∈ B(c, δ) ∩ [a, b],
and U is a neighbourhood of x contained in B(c, δ), then ωf(U) < α, so ωf (x) ≤
ωf(U) < α, also. Thus, G is open in [a, b].

Since [a, b] is closed and G is open in [a, b], {x : ωf (x) ≥ α} = [a, b] \ G, is
closed in [a, b] and in R. �

Let `(I) denote the length of the interval I. A subset N of R is said to have
measure 0, if for each ε > 0, there exists countable family H = {I1, I2, . . . } of
open intervals covering N , with total length

∑
k `(Ik) < ε.

Lemma.
(1) Every countable set of reals has measure 0.
(2) If B has measure 0 and A ⊂ B, then A also has measure 0.
(3) If Ak has measure 0, for all k ∈ N, then

⋃
k∈N Ak also has measure 0.

.

Proof. (1) Let A = {a1, a2, . . . } be countable, ε > 0, and for every k, let Ik be
the interval (a − ε/2k+1, a + ε/2k+1). Then, A ⊂

⋃
k Ik — that is these intervals

cover A. For each k, the length of Ik is ε/2k, and the total length is
∑

k `(Ik) ≤∑∞
k=1 ε/2k = ε. Thus, A has measure 0.

(2) is obvious, because a family of intervals that covers B also covers A.
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To prove (3), one uses a modification of the proof of (1). Let ε > 0. For each
k, let Hk be a countable family of intervals whose total length is less than ε/2k.
Then,

⋃
k Hk is still a countable family of intervals, and their total length is less

than
∑

k ε/2k = ε. �

Theorem. (Lebesgue’s Criterion for integrablility) Let f : [a, b] → R. Then,
f is Riemann integrable if and only if f is bounded and the set of discontinuities
of f has measure 0.

Notice that the Dirichlet function satisfies this criterion, since the set of dis-
continuities is the set of rationals in [0, 1], which is countable.

Proof. Let f be Riemann integrable on [a, b]. Then, f is certainly bounded. Let D
be the set of points of discontinuity of F . Then D = {x : ωf (x) > 0}. We are to
show that D has measure 0. For each α > 0, let N(α) = {x ∈ [a, b] : ωf (x) ≥ α}.
Then, D =

⋃∞
k=1 N(1/k). Thus, we need only prove that each N(α) has measure

0.

Fix such an α and let ε > 0. By the Basic Integrability Criterion, we can choose
a partition P = {x0, x1, . . . , xn} of [a, b] with

n∑

i=1

ωf([xi−1, xi])(xi − xi−1) < αε/2.

Assume, as we may, that the xi are distinct. Let F be the set of all i for which
(xi−1, xi) intersects N(α). Then for each i ∈ F , ωf([xi−1, xi]) ≥ α. Thus,

α
∑

i∈F

∆xi ≤
∑

i∈F

ωf([xi−1, xi])∆xi < αε/2,

so that the sum of the lengths of the intervals (xi−1, xi) is less than ε/2. These
cover N(α) except for the elements of {x0, x1, . . . , xn}. But these can be covered
by intervals whose lengths total less than ε/2, so that N(α) can be covered with
open intervals of total length less than ε, as required.

For the converse, let f be bounded and suppose that the set D of discontinuities
of f is of measure 0.

Fix ε > 0 and let E = {x : ωf (x) ≥ ε}. Since E ⊂ D, E has measure 0.
Thus, E can be covered by a countable family of open intervals, whose total length
is less than ε. Since E is closed and bounded, it is compact, so a finite family of
such intervals will do, say E ⊂

⋃m
i=1 Ui. For each i, let Ii be the closure of Ui. For

simplicity, by replacing pairs that intersect, we may assume that no two Ii intersect.
Let D = {I1, . . . , Im}.

The set K = [a, b] \
⋃m

i=1 Ui is compact (in fact, is the union of a finite number
of disjoint closed intervals) and consists of points where ωf (x) < ε. For each x ∈ K,
there is a closed interval J with x ∈ int J and ωf([J ]) < ε. By compactness, a finite
number of such intervals covers K. By intersecting with K, we can assume that
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they are all subsets of K. Thus, let C = {J1, . . . , Jk}, be closed intervals whose
union is K and such that ωf([Jj ]) < ε, for all j. We can (and do) assume that the
intervals Jk do not overlap.

The family D ∪ C = {[x0, x1], [x1, x2], . . . , [xn−1, xn]} partitions [a, b] and

n∑

i=1

ωf([xi−1, xi])(xi − xi−1) =
m∑

i=1

ωf(Ii)`(Ii) +
k∑

j=1

ωf(Jj)`(Jj)

≤
∑

i

2‖f‖`(Ii) +
k∑

j=1

ε`(Jj)

= 2‖f‖
∑

i

`(Ii) + ε(b − a)

≤ 2‖f‖ε + ε(b − a),

which is arbitrarily small. Thus, the Basic Integrablity Criterion is satisfied and f
is integrable. �

You may have noticed that part of this argument is similar to that in the proof
that the composition g ◦ f of a continuous function g with an integrable function f
is integrable. We see now that the composition result is an immediate consequence
of Lebesgue’s criterion.

Lemma. Let f : [a, b] → [c, d] be integrable and g : [c, d] → R be continuous.
Then, g ◦ f is integrable.

Proof. The set of points of discontinuity of f has measure 0, since f is integrable.
But g◦f is continuous wherever f is, so the set of discontinuities of g◦f is contained
in that of f , so has measure 0 also. �
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