Lebesgue’s Criterion for Riemann integrability

Here we give Henri Lebesgue’s characterization of those functions which are
Riemann integrable.

Recall the example of the he Dirichlet function, defined on [0,1] by

f(z) =

{ %, if z = § is rational in lowest terms

0, otherwise

This function is continuous at all irrational numbers and discontinuous at the ratio-
nal numbers. It is also Riemann-integrable (with integral 0). It turns out that there
is a connection here. It is the nature of the set of discontinuities that determines
integrability.

For a real-valued function f defined on a set X, and I C X, let wf(l) =
sup, 41 |f(s) — f(t)|, the oscillation of f on I, as usual. The oscillation of f
at a point z is defined as

wy(z) = inf{wf(B(z,0)) : 6 > 0}.
It is easy to prove that f is continuous at z if and only if wy(z) = 0.

Lemma. Let f : [a,b] — R. Then, for every a > 0, {z : ws(z) < a} is open in
la,b] and {z : wy(x) > a} is a closed set (in R).

Proof. Let G = {x € [a,b] : ws(x) < a}. Let ¢ € G. Then, wy(c) < a and by
definition, there is a 6 > 0 such that wf(B(c,d) N[a,b]) < a. If z € B(e, §) N |a, b],
and U is a neighbourhood of z contained in B(c,¢), then wf(U) < «, so wy(z) <
wf(U) < a, also. Thus, G is open in [a, b].

Since [a,b] is closed and G is open in [a,b], {z : ws(z) > a} = [a,b] \ G, is
closed in [a,b] and in R. O

Let ¢(I) denote the length of the interval I. A subset N of R is said to have
measure 0, if for each ¢ > 0, there exists countable family H = {I1,I5,...} of
open intervals covering N, with total length )", ¢(I;) < e.

Lemma.

(1) Every countable set of reals has measure 0.
(2) If B has measure 0 and A C B, then A also has measure 0.
(3) If Ay has measure 0, for all k € N, then | J, oy Ax also has measure 0.

Proof. (1) Let A = {aj,as,...} be countable, ¢ > 0, and for every k, let I} be
the interval (a —e/2*1 a +¢/2%F1). Then, A C |J, Ix — that is these intervals
cover A. For each k, the length of I, is /2%, and the total length is Y, ¢(Ix) <
Yoo g/2F = . Thus, A has measure 0.

(2) is obvious, because a family of intervals that covers B also covers A.
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To prove (3), one uses a modification of the proof of (1). Let ¢ > 0. For each
k, let Hy be a countable family of intervals whose total length is less than e/2*.
Then, J,, Hy, is still a countable family of intervals, and their total length is less
than Y, /28 =e. O

Theorem. (Lebesgue’s Criterion for integrablility) Let f : [a,b] — R. Then,
f is Riemann integrable if and only if f is bounded and the set of discontinuities
of f has measure 0.

Notice that the Dirichlet function satisfies this criterion, since the set of dis-
continuities is the set of rationals in [0, 1], which is countable.

Proof. Let f be Riemann integrable on [a,b]. Then, f is certainly bounded. Let D
be the set of points of discontinuity of F'. Then D = {x : wy(z) > 0}. We are to
show that D has measure 0. For each o > 0, let N(a) = {z € [a,b] : ws(z) > a}.
Then, D = J;, N(1/k). Thus, we need only prove that each N(«) has measure
0.

Fix such an o and let € > 0. By the Basic Integrability Criterion, we can choose
a partition P = {xg,x1,...,2,} of [a,b] with

n

wa([xi,l,xi])(a:i —x;1) < ag/2.

i=1

Assume, as we may, that the x; are distinct. Let F' be the set of all ¢ for which
(-1, ;) intersects N(«). Then for each i € F, wf([x;—1,2;]) > «. Thus,

OZZA%‘ < wa([xi_l,xi])Axi < ae/2,

i€EF i€EF

so that the sum of the lengths of the intervals (z;_1,z;) is less than €/2. These
cover N(a) except for the elements of {zg,z1,...,z,}. But these can be covered
by intervals whose lengths total less than /2, so that N(«) can be covered with
open intervals of total length less than ¢, as required.

For the converse, let f be bounded and suppose that the set D of discontinuities
of f is of measure 0.

Fix ¢ > 0 and let £ = {2z : wy(xz) > €}. Since E C D, E has measure 0.
Thus, F can be covered by a countable family of open intervals, whose total length
is less than . Since F is closed and bounded, it is compact, so a finite family of
such intervals will do, say £ C U:il U;. For each i, let I; be the closure of U;. For
simplicity, by replacing pairs that intersect, we may assume that no two I; intersect.
Let D={l1,...,In}.

The set K = [a,b] \ ;~, U; is compact (in fact, is the union of a finite number
of disjoint closed intervals) and consists of points where w¢(z) < €. For each z € K,
there is a closed interval J with z € int J and wf([J]) < e. By compactness, a finite
number of such intervals covers K. By intersecting with K, we can assume that
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they are all subsets of K. Thus, let C = {J1,...,Ji}, be closed intervals whose
union is K and such that wf([J;]) < ¢, for all j. We can (and do) assume that the
intervals Ji do not overlap.

The family D UC = {[zo, z1], [z1,22], - - ., [*n—1, %]} partitions [a,b] and
n m k
> wfwin, @) (@i — 1) =Y wf(T)L) + > wf(J;)eT;)
i=1 i=1 j=1
k

SZ%W@+§MM
=2||f] Ze(m +e(b—a)

<2|flle + (b - a),

which is arbitrarily small. Thus, the Basic Integrablity Criterion is satisfied and f
is integrable. O

You may have noticed that part of this argument is similar to that in the proof
that the composition go f of a continuous function g with an integrable function f
is integrable. We see now that the composition result is an immediate consequence
of Lebesgue’s criterion.

Lemma. Let f : [a,b] — [c,d] be integrable and g : [c,d] — R be continuous.
Then, g o f is integrable.

Proof. The set of points of discontinuity of f has measure 0, since f is integrable.

But go f is continuous wherever f is, so the set of discontinuities of go f is contained
in that of f, so has measure 0 also.
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